Int. J. Solids Stractures, 1975, Val. 1. pp. 1097-1110, Pergamon Press, Printed in G Britein

HIGH-ORDER TRIANGULAR FINITE ELEMENT
FOR SHELL ANALYSIS

D. J. Dawr

Department of Civil Engincering. University of Birmirgham. Birminghum. Fngfand
(Received 8 August 1974 revised I8 Februus 1975

Abstract—A curved-shell finite element of triangular shape is described which is hased on conventional shell
theory expressed in terms of surface coordinates and displacements. kuch of the three surface displacement
components s independently represented by o two-dimensional polyvnomial of constrained-yuintic order
giving the element a total of 54 degrees of freedom. Two particular geometric forms of the element are
considered, viz. doubly-curved shallow and circular cylindrical. The hgh level of accuracy which can be
achieved using few elements is demonstrated in a range of problems w here compartson is made with previots
finite element solutions.

I. INTRODUCTION

Recent studies by the author[1, 2] of the comparative efficiency of various arch finite elements
have demonstrated the characteristics of models based both on relatively high-order polynomial
displacement fields and on assumed-strain fields. Arch models hased on (two) independently-
interpolated displacement components of quintic order have been shown to be consistently very
efficient in a range of applications embracing shallow und deep geometries and extensional and
nearly-inextensional behaviour. This efficiency is such that in modelling circular arches with a
single element based on surface (i.e. tangential and normul) quintic displacement components the
error in the calculated maximum displacement is less than 0-4% in any of the considered
applications{2]; calculated forces and bending moments are :lso accurate. Elements based on
polynomial displacement fields in which one or both componcnts is reduced to cubic order are
very much less efficient on a degree-of-freedom as well us on an element basis. In particular, if
the tangential component is restricted to a cubic variation eiement efficiency depends markedly
on problem geometry and the calculated force distribution= for such models exhibit waviness in
all applications; this waviness becomes very pronounced in nearly-inextensional problems where
its order can be very many times greater than the true magnitude of the force. This is so whether
the associated normal component of displacement is of cubic or quintic order and, in general.
there is no improvement in increasing the order of the nermal component from cubic to quintic
unless the order of the tangential component is similarly crewsed ithough exceptionally there is
a significant improvement where the arch geometry is shullow and relatively thick).

The arch studies point to the use of quintic polynomial displacement components as the basis
for doubly-curved shell elements. In fact there already exist in the literature two conforming
elements of triangular planform with quintic polynomial assunmipliens for all three displacement
components [3, 4] but these components are cartesian ones. Curtesiun displicement components
were chosen since they allow the precise representation of the rigid-body motions of an element
when the geometry of the undeformed shell is defined by fincar combinations of the
same set of basic functions used to define the displacements. In the work of Argyris
and Scharpf[3] the development of the shell theory on which the element is based uses the
natural strain concept and its relationship to classical thin shell theory is not ubvious. The work
of Dupuis and Goél[4] is based on shell theory written in terms of u curtesian coordinate system
in place of the usual curvilinear system and the equations are cxpressed in relation to the height
of the curved middle surface above a reference plane. Possible difficultics associated with such
schemes as these have been pointed out by Morris[5]. In a further study Dupuis[6] has described
a triangular shell element based on a modified representation of the shell geometry in which the
element is straight-sided in the plane of shell parameters. Rigid-body motions are represented
precisely only by making an appropriate approximation to the shell middle surface and although
the derivation is, in principle, quite general it is speciulised to the case where the displacement
components are represented by third-order polynomials.

1047



HIUN 1Y b Dawg

As shown by the results for circular arches| 2} the exact representation of element rigid-bods
motion states (whose nature is discussed in [7]) or indeed of other bhasic states such as
inextensional modes. is not necessary for high accuriacy and rapid convergence providing ~uch
states can be closely approximated. This can be achieved in an element bused on conventioni
shell theory and the assumption of independently-interpolated polynomial surface component-
s0 long as the order of the polynomial components is sufficiently high. 1t o~ further noted th
polynomial surface displacement fields ure particularly appropriate in dealing with an impertan
class of “sensitive”™ problems in shell work|3. 8] and that an analvsis bused on cons ention.
theory easily allows the exact geometric representation of standard shiapes of sheli

The present paper details the development and application of i contorming triungutar ~heti
element which belongs to the vategory described in the preceding puragraph. The order f cach
surface component polynomial is construined-quintic (i.e. basically o complete  guintic
polynomial in two dimensions having twenty-one terms to which three constraints wre applicd:
and thus the element has u total of 84 degrees of freedom. The philosophy is a general one b
here the analysis is limited to two specific classes of shell geometry which exhibit 1he
characteristics of general shells, viz. the shallow shell with two principal radii of curvature plus ..
radius of twist and the circular cvlindrical shell. This restriction is impased so that the elamen
stiffness may he abtained in closed Torm and numerical integration avorded  The climinidon of
any possible small error associated with a numerical integration scheme i considered desnabic
since it is proposed to study in detail the precise variation of calculated displacements. membiane
forces and bending moments vver the shell middle surface

The approach described here is directly related to that adopted carlier by Cowper. Lindberg
and Olson[9-12| with the fundumental difference that whilst the earlier work is hased on the
assumption of i constrained-quintic normal displacement component. the two  tangential
displacement components are taken to be cubic polynomiuls, Cowper ¢f al | 12} contend thut. fo
a set number of elements. increasing the order of the tangential components 1o constrained
quintic will Tead to only  murginal improvement in accuracy achieved ut the expense i an
increase in the degrees of freedom of 3067, This contention is based on error considerations using
a Taylor's series but is certainly not correct m all situations since. us mentioned carlier 1 1he
limiting case of the deep circular arch a model with guintic tangential displacement is puck moge
efficient on o degree-of-freedom hasic than w corresponding mode! with cuabiv tingentia
displacement.

Any assessment of the merits of a finite element proposed for the anabvsis of shell stevctures
must take account of the diversity of possible applications of the clement. Depending upor
geometry and loading the shell response may be dominated by membrane behaviou:. o by
bending behaviour. or the shell might function primarily as o membrang with locai sones o
bending. etc.: rigid-budy motions mayv or ntay not be of importance. In these circumstunces .
valid theoretical prediction of the accuracy of u finite clement modelling of i general cursed shels
structure with large. unequal elements. is very difficult to construct. (It is noted though th
detailed error estimates have been presented for the simplified problem of the Cireula
arch[13-15]). Accordingly, the accuracy of the element presented here is examined soleiy b
numerical application to specific problems. However. such applications. supplemented by vesult -
presented carlier for the limiting case of the arch[1. 2}, embrace a wide range of shell beha o
which includes all the categories noted above. In the presentation of Jdetailed numerici
particular attention is paid to o comparison between results of the present analysis and 1hat o
Cowper et al. in a runge of applications, It would be expected from the arch restits that there
would be a significant improvement in solution efficiency using the 54 degree-of-freedons - 54 dof
element in many deep. thin situations but a lesser improvement in shallow applicutions

Finally. it is noted that ut the review stage one of the referees of this paper has drawn
attention to some recent work of Idelsohn]16] in which a family of shell elements relatedd o thai
described herein is apparently developed.

st~

LOANALYSIS DETALLN
Of the many shell theories available in the literature that of Koiter[17] is adopted here. In this
theory (unlike some others) the homogeneous strain-displacement equations are satishicd in i
general rigid-body motion. The theory assumes an orthogonal curvilinear coordinate svsten b
this system need not coincide with the dines of principal curvatore of the <heil smifac, - i
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notation of Koiter the strain energy density, dV., of a shell of thickness & may be expressed as
the sum of the extensional and flexural energies in the form

1 2_~n I 2 +l1_2 + 2_7“_ ( _ 2)]
an=§C(|:(€|+E:)—-(I—V)(GIE:—Zl// 12[(/\/1 X2 —=2 v)(xix2—T

or
aVo=S1enB el (M
Here

{e} ={e:. 2. . x1. x2u 7} (2)

and the (6 x 6) matrix [ B} is easily constructed. The quantities €, and e- are the extensional strains
along orthogonal parametric curves a, 8 and & is the shear strain between these curves; xi, xz
and 7 are the physical components of the changes of curvature and twist referred to these curves.
Also the quantity C is defined as

Eh

CZ(I—V:)

where E and v are Young's modulus and Poisson’s ratio respectively.

As mentioned earlier, the present paper is concerned specifically with two representative
types of shell—those of shallow geometry and those of circular cylindrical geometry—so that
simplified strain-displacement equations can be used and thus the element stiffness can be
evaluated in closed form. For both types of shell the strain-displacement equations can be
conveniently expressed as

{e}=[DNd} (3)

where

{d}= {A_X_W aX Ay " aXT aXaY ay”

oU aU aVv av _, a°W a°W aQW} @

For the shallow shell U and V are the tangential displacement components in directions
parallel to suitable global cartesian coordinates X and Y. and W is the normal displacement
component. Following the usual assumptions of shallow shell theory, the matrix [D] is

M 0o 0 0 1R, 0 0 0]
00011 I/R 0 0 0
01 10 2JIT 00 0
_ 5
PI= 10 000 0 100 ©)
0000 0 00 1
0000 0 01 0]

where R,, R.and T are the (constant) radii of curvature and twist of the middle surface related to
the X, Y coordinates.

For the cylindrical shell the X coordinate runs paraliel to the longitudinal axis and Y is the
curvilinear coordinate orthogonal to X: U, V and W are displacement components in the
directions of the X coordinate, Y coordinate and the shell normal respectively. The matrix [D] in
this case is taken to be

10 0 0 0 0 0 0
0 o0 0 1 /R 0 0 0

D)= |0 ! 1 0 0 0 0 0 ©
0 0 0 0 0 1 00
0 0 0 -1YR 0 0 0 1
0 R 3R O 0 0 1 0

where R is the mean radius of the cylinder.
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For the finite element analysis the domain of the shell in the XY plane (representing the base
plane in the cuase of the shallow shell or the developed plane for the cylindrical shell) is divided
into triangular elements as shown in Fig. 1. Within an element it is required that each of the three
displacement components varies basically as a quintic polynomial in the two coordinates. As is
well known, the use of a quintic polynomial displacement field originated in the development of
refined conforming triangular plate bending elements by a number of independent investigators
(see [18]). Corresponding to a complete quintic polynomial such an element has twenty-one
degrees of freedom comprising the deflection with its first and second derivatives at each vertex
together with the normal derivative at the mid-point of each side. However, a more convenient
cighteen dof (constrained-quintic) displucement field is obtained when the mid-side degrees of
freedom are eliminated by restricting the variation of normal slope along an edge to a cubic
polynomiual and it is the constrained-guintic polynomial which is selected here for each
displacement component. Connection of ull nodal quantities ensures continuity at inter-element
boundaries of each displacement component and of its normal derivative, although the continuity
of the normal derivative of the tangential components is not strictly necessary for compliance
with the potential energy principle.

¥V

rd
-

a - —— X, U

Fig. 1. Shellelementin N-Y plane.

Having decided in broad terms the basis of the shell element the detailed calculation of the
element stiffness can be implemented in a number of ways, but it is most convenient here to
extend and modify the approach described by Cowper et al.[9, 10]. This approach leads to a
general closed-form integration formula for the evaluation of stiffness terms via the introduction
of Tocal coordinate axes v and v (sce Fig. 1). The corresponding local displacement components
are the tangential ones 1 and r measured in the directions of x and vy respectively, together with
the component normal to the shell surface. w, which coincides with the global component, W.

The components of the conforming displacement field are assumed to be of the form

= AP AN F AN - AT Aay + AT+ AT+ ATy
M i, 4 k] . PR 3
3 .‘\u.\._\' t ‘ 1wV + 4 ny 4 A Xy /'/\ Xy + A 14X¥
. > 2 s
FAY s AT+ A Yy T+ Ay T+ Ayt + Any

with like expressions for r and w giving 60 independent coefficients A; in all. The displacement
components are more suitably expressed

M 40 60
= Z A" opos Z Ax"v%oand w = 2 Axiv’ (7
i1 i 21 i 41

where m;. .. s; are integers running between U and 5. The above polynomial does not contain an
x*y term so that the normal slope variation along edge 1-2 is automatically restricted to a cubic
polynomial: two further constraint conditions per component are applied later to similarly restrict
the normal slope variation :ilong the remaining edges. The number of independent coefficients is
thus reduced to I8 per component. 54 in all.
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Following the example of [10] the strain energy for the shallow or the cylindrical shell element
can then be expressed (by substituting eqn (5) or (6) into eqn (1) via eqn (3) and transforming to
local displacements and coordinates) in the form of an integral over local coordinates as

v(,=$ J f [d](LYd} dx dy (8)
where
- U u v v w w w
{d}= {5;’3_)"5’ 7’ ¥ o _3xr?y’W} 9)
and
[L]=[RJ"[DI"[B]IDIR.). (10)

Matrices [R.] and [L] have the same general meaning here as in [10]; the rotation matrix [R.],
which links the column vectors {d} and {d} (i.e. {d} = [RJ}{d}) is in fact unchanged whilst matrix
[L] does, of course, differ in detail both between the shallow and cylindrical shell analyses
described here and the earlier analysis.

The strain energy can be further expressed via eqn (7) in the form

Vo= SIAIKNA) (11)

Here {A} is the column vector of the sixty coefficient A; and [k] is a (60 X 60) ‘‘stiffness” matrix
whose elements k; are explicitly defined in terms of the elements of the (8 X 8) matrix [L] by a
modified form of the equation given in the Appendix of [10]. Since this modified equation is a long
one it will not be presented in full here; rather the necessary changes from the original equation
will be noted.

For the shallow shell element described here the expression for k; is that of the original
equation but rows 8 to 13 inclusive as printed may be deleted since the elements of matrix [L]
which are involved (L (1,6) through to L (4,8)) are in this case zero. For the cylindrical shell
element presented here the expression for k; is the complete one of [10] with the addition of the
two terms

+L(6, Dr(ri = Drs; + 1i(r = Drsi 1F(r + 1, =3, 5.+ 5,— 1)
(12)
+ L(7,8)[rsisi(s; = )+ risgsi(si = DIF(ri+1r,— 1, 50+ 5, — 3)

where F(m, n) is defined in [10].

The “stiffness” matrix [k] corresponds to the quadratic form (eqn 11) of the strain energy in
terms of the polynomial coefficients {A}. The energy can be further expressed in a quadratic form
of the global degrees of freedom as

Vo = 'g[W2][K2]{ Wz} (13)

where,
K] = [R)"[T 1"k T:(R] (14)

is the required global stiffness matrix.
Here the column vector of global degrees of freedom {W} of length 54 comprises the
quantities

p 8U 8U 3*U a*U U, SV o W
'0X’ Y 9X? 3XaY’ aY” Y? 3Y?
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at each of nodes 1. 2 and 3 in turn. The matrices [ T} and [ R | here, of course, take a different form
from that used in the work of Cowper et al.[9. 10]. Matrix [ T1{ is a transformation matrix relating
the coefficients A; to the local degrees of freedom. w. (dufix). . ... (a4 wiayyat each node. using
the boundary conditions and incorporating the two constraint equations per displacement
component which are required, us mentioned above, to restrict the normal slope variation ulong
edges 2~-3 and 3-1. Matrix [ T\ ] is of order (60~ 34} and is the inverse of a (60 = 60) matrix | 1] with
the last six columns of this inverse deleted: detals of matrix | T are given in Table 1. Matriy | R
is « rotation matrix used to transform global degrees of freedom to local vnes and is detatled in
Table 2.

Fable 1. Matrix | T}. where submatrices [S:) FS.L 1S and [5.0
are as defined in [9)

s2 [’ a
[ S; 0
Q 0 5o
S o] 4]
o 5 0
[T] » 0 0 Sy
S6 0 Q
4 S o]
[ o} St,
Sy ¢ e
g Sg o
| o [} Su-‘

Tahle 2. Matrix | R}

!- T 0 ] o] < ]
o . [+ o [o] o
&} = 0 0 = o ¢ 0
4] 0 ¥ B [+] 0
] ¢ > ] Ty 0
B 0 o] o G 4] ]
whnr_e_ -
o o 0 [+] 0 0 a [} ¢ [ G o
s} o2 se o] [} o} [} 3¢ 5~ 0 G [4]
[} .3t o2 [+ & 0 o} -a2 sc [+ < 9
o 2w ef 2eef 8% 0 G D ge? g% gf
4] ¢ o -:u:2 ¢3-52c scf: 0 [+] 0 -s2a ::c:z-::?s szc
[rl} = [+] 4 a 0% -200° 03 0 [¢] [+] a3 -2s% ac?
-3 2 ¢ 0 ¢ v [ ¢ o 0 4] 0
0 -—ar w3?  C s o 6 ¥ s O e @
0 ad  ege Q [ o 0 -ge o~ G T G
o o 0 0 [¢] <] [} o e wct  gic
[} N [ [ [ v [} 0 G -ged od-sfe act
o @ 6 o0 ¢ o o 0 G % ~raet &3
L .
-1 € 4] Q [ 4] ]
o [} s [+] &) 0
[¢] - < [+] ¢ 4]
[r2] z 0 2 o e? 23¢ a2
¢ [¢] 1] —se c?~s?  se
[+ o] Q s2 -23c¢ 42
L .

and @ = gin® s+ © = copl
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Finally, the stress resultants (N, N> and S) and couples (M,, M, and W) are obtained from
the calculated strains using the relationships

2

N|=C(61+V€2), Ml=%(X1+VX2)9

N.=Clex+ve), M.= % (x2+ vx1), (15)
1 Ch*
S=§(l— v)Cy, W= B (1-v)7

3. NUMERICAL STUDIES

The two forms of the shell element described in the last section have been used in
convergence studies of some well-documented problems. The elements are incorporated into the
BERSAFE finite element system[19] and calculations have been performed on an IBM 360 series
computer using double precision arithmetic throughout. The distributions of displacements,
stress resultants and couples are obtained by calculating these quantities at points along the
element edges at intervals of one tenth of the side length. In representing a distributed loading the
load vector is derived in a consistent manner through virtual work considerations, the necessary
integrals being calculated in closed form. In considering the specification of boundary conditions
only the necessary kinematic conditions have been applied; no attempt has been made to satisfy
any force boundary conditions in addition.

Infinitely-long, clamped circular cylinder

This singly-curved problem, illustrated in Fig. 2, was chosen as a first check on programme
validity. With Poisson’s ratio » = 0-0 and all longitudinal displacements zero the problem is
equivalent to the centrally-loaded, clamped arch. Four geometries are considered corresponding
to the two values of the angle 8 and the two values of thickness shown in the figure. The shallow
form of the shell element is used in analysing the problem corresponding to the smallest value of
B. Two gridworks are used in this symmetric problem, one being that shown in Fig. 2, and the
other a coarse gridwork of similar form but with only 2 elements in the Y direction.

Uniform line load

B=90°or 7¥%°
h=1/16 or!
v=0-0

Fig. 2. Details of infinitely-long, clamped cylinder.

The percentage error in the calculated normal deflection under the load for the four
geometries is given in Table 3. It is seen that the error increases with increase in angle 8 and with
reduction in thickness. Although the magnitude of the error is small it is generally somewhat
larger than that for the corresponding quintic—quintic arch[1, 2] since here in the shell analysis
constrained-quintic displacement components are used. It is noted that the numerical studies
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Table 3. Errorin calculated displacement for infinite cylinder

using arch elements show that n this application the efticiency of the shell elements of |9, 10)
would be very much less than that of c¢he preseni elements. For the deep. thin.
nearly-inextensional geometry the errors in using two and four quintic-cubic arch elements in the
Y direction are in excess of 8% and 10 respectively and these errors will be somewhat
increased for the corresponding shell elements since they are based on o constrained-quintic
normal displacement component.

Spherical cap

This doubly-curved shallow shell i« shown in Fig. 3. The loading is a uniform normal pressure
acting over the whole shell surface und the <hell edges are freely supported (i.e. Wand V zero on
edge AD, W and U zero on edge AB). Detailed results for this problem are available for
comparison, both exact]20] and based on the 36 dof clement of Cowper ¢t ul.[9]. Two geometries
are considered corresponding to values of a shell parameter Rh/ L " equal to 0-02 and 0-005. Both
membrane and bending behaviour are of imporiance in this difficult problem. the shell functioning
primarily as a membrane with zones of bending near the supported edges: these bending zones
are more localised for the shell with the smalter value of Rh/1.7 ti.c. for the thinner shell if R and

[. are constant).
/ g

b

y

..~ Unmform normal pressure, F_

. <
~
i -

—
~

o f
o /

2% 2R mesh SN
1N

3 x 3R mesh

I-ig. 3. Sphericad cap geometry .

The calculations using the 54 dof shallow ciement are Jargely based on the use of a uniform
mesh of elements in a symmetric quadrant though this is not the mast efficient arrangement in this
problem and some use is also made of the refined element meshes shown in Fig. 3. Convergence
of the total strain energy calculated for both shell geometries using both the present elements and
the 36 dof elements is shown in Fig. 4. [t is ¢lear that in this particular shallow application the
convergence of the strain energy using the present clement is very little different on «
degree-of-freedom bhasis than that of the carlier clement.

Some typical distributions of displacements. forces and moments calculated using the 34 dof
element are illustrated in Figs. Sa and b where comparison is made with the exact solution. Quite
clearly the behaviour of the thinner shell is the more difficult to accommodate in the finite element
calculation because of the steeper gradients associated with it. This difficulty is lurgely overcome
by suitable refinement of the mesh and considering the small number of elements that are used in
analysing this difficult problem the accuracy of the results is high. The precision of the calculated
bending moment distributions presented here is little different from that obtained by Cowper et
al.[9] but there is a considerable improvement in the calculated force distribution, with much of
the oscillation of the force eliminated.
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Fig. 4. Convergence of strain energy, spherical cap problem.
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Cvlindrical shell roof

The shell roof prablem shown in Fig. 6 i~ it problem which hus been used extensively to test
finite element analyses. The loading is the self-weight of the shell and membrane and bending
effects are both important. The <hell is margmally shallow and the “exact™ caleulations i
Scordelis and Lo[21] are largely based on shatlow shell eguations although not consistently -o. A\
deep shell solution by Forshergi22] gives - sesult about 37 lower for the greatest vertical
displacement of the shell.

£-3 OxiC5 W s

h={325f
e We:ght = 901k ‘sc
T
. V\.‘. . e O
£ ~
P e ¥

digphrager.
suppart

Fig 6o Shelb: oot geometrt

The shell roof is analysed here using the 34 dof deep cylindrical shell element and uniform
element meshes. The self-weight loading is accommodated by resolving into tangential und
normal loads of trigonometric form and expressing the sine and cosine of the angle tfromn the
vertical as a Taylor's series of terms up to the fourth power of the angle. Distributions of
displacement, force and moment at the central section BC are shown in Fig. 7. wherce it can be
seen that the finite element results ire very accurate with even the coarsest possible mesh giving
generally good agreement with the “exact™ rosults.

—_— -
—o4 40 2 2¢ & @ i 40 30 20 o -
r T T 3r T T T
| .
| 1
o ¢ 2 :r—
. L ]
i L
< o4f —a
< : T
2 : :
° deflectior Iy
2 X .
b} z ‘
302 e PSS
@
>
b os SR ' [' . :
S ISV ! PR | . i i 1 -
B L <]
-—- Exact solution
(a) Vertical Deflection ana Longitudinal Force . In: l
X2x2 Finite etemen? soluticn
03x3 l

ib) Bending moments

tig = shell roof distributions at central section, BC

Details of the rapid convergence of point vilues of displacement, force and moment and of
the total strain energy are recorded in Tahle 4. Comparative results for an “exact™ analysis[9] arc
listed but since these are based largely on shallow-shell theory convergence is ta slightly different
levels. It is noted that the rate of convergence of the present finite element results (including
particularly that of the strain energy) is much more rapid, on a degree-of-freedom as well as onun
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Table 4. Shell roof numerical results

Finite | 101, W 1 "2 3., -2 -4 ;
:::ent (inf) (fn.) (SX?) %.?r‘:c) 1070 (igi(‘?ﬁﬁ) 1(‘1)1).5?::%}2::.) 1 ?Eg;gin
1x1 [-1.46502 -3.90142 -8.43344 5.5259 6.0781 ©.4520 1.6522 5.69514
2x2 1-1.48885 -3.97819 -8.61524 5.4483 6.2658 2.1797 1.0615 5.78732
3x3  |-1.4892) -3.98455 -8.62433 5.4120 6.2982 2.0797 0.9120 5.79115
4x4 [-1.48345 ~3.38492 -8.62556 5.4034 6.3032 2.0627 0.9200 5.79247
ggixltggn ~1.51325 -4.09916 -8.76147 5.2494 Ga412s 2.0562 0.9272 5.88277

element basis, than that of the 36 dof element results[9]. This is illustrated for one quantity—the
vertical deflection at the centre of the straight edge—in Fig. 8. where results of various other
finite element studies[23-25] are also included. The performance of the present element
compares well with that of any other available element in this application.

TOTAL DEGREES OF FREEDOM

0 200 400 600
T T T T T T
4
' Exact” shallow (21]
Y A

c 'Exact ’deep[2-2>
o
=
<3
z
o
=
(&
i}
—
w
a
o Ref  Element type
g 751 Curved
£y [2  Facet
g 9] Curved

- B3] Isoparametric, fuil

W integration

A (23] Isoparametric, reduced
integration
0 ® —  Present

Fig. 8. Shell roof deflection comparisen.

Pinched cylinder with free ends

In this problem the ends of the cylinder shown in Fig. 9 are completely free and the relevant
data is L =10-35in, R =4-953in. E =10-5x 10°psi and s =0-3125. This pinched cylinder
problem has been studied in a number of finite element investigations. Most of these are
concerned with a shell thickness of 0:094in. (R/h = 52-8)[26-30] but there also exist solutions
corresponding to a thickness of 0-01548in. (R/h =320)[29.30]. The problem is almost
inextensional and is sensitive to the representation of rigid-body motions: an inextensional
solution by Timoshenko exists[31] though this gives a somewhat low value for the deflection
under load. The problem is complicated by the very steep bending moment gradients local to the
loading points and it is desirable to take account of this by employing some refinement of the
finite element mesh in this region; such refinement is easy to apply where the elements are of
triangular shape.

Since accurate comparative values are available only for the magnitude of the deflection
under the load, convergence of this quantity alone is examined for both thicknesses of shell in
Table 5. The differences in the quoted comparative values of displacement reflect to some extent
at least the small differences in the shell theories used. It is seen that convergence of the finite
element results is rapid and that very few elements in the symmetric octant are required for a
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Fig. 9. The pinched cylinder.

Table 5. Deflection of free pinched cylinder

Mnite Final Deflection under load (in.)
coih | of feesdon Vet |
1x1 30 0.10619 0.023217
2x2 96 0.11202 C.024236
3Ix3 198 0.11313 0.024452
4 x4 336 0.11341 €.0245%
5x5 510 0.11363 0,024621
4 x 4A 374 0.11360 0.024605
4 x 4B 412 0.11364 ¢.024618

Comparative .13 ) 0.00462 [3n]

solutions ca137 poj|  o0.0243 P

Co1139 QB]

result of adequate engineering accuracy. It is noted that results for nearly-inextensional arch
problems and particularly for the pinched ring problem[2] indicate that shell elements based on
independently-interpolated polynomial displacements in which the membrane components are
restricted to a cubic variation will not deal very efficiently with the free pinched cylinder problem.

Pinched cylinder with supported ends

For this problem reference may again be made to Fig. 9 where in this case L/K:: 2.
R/h =100, » =0-3. Here. though, the cylinder ends are supported by a diaphragm (i.c. the
displacement components W and V are zero around the curved edge AD) which increases the
problem difficulty. Detailed solutions of this problem based both on a finite element study
using their 36 dof element and on a double Fourier series solution are given by Lindberg et al.|11].

The finite element results for the 54 dof cylindrical shell element are given in the form of
typical distributions of displacement components (Fig. 10) and of forces and moments (Fig. t1)
and compared with the solutions of [11]. In considering uniform meshes there is clearly a very
significant improvement on an element basis in using the present element and there is also an
improvement in the calculated deflection under load (and hence the strain energy) on u
degree-of-freedom basis. The very considerable oscillation in the membrane force distribution
calculated using the 36 dof element is drastically reduced in using the higher-order element. With
regard to the force distributions it is noted that the calculated finite element values of membrane
force local to the applied load are converging on rather higher levels than those given by the
Fourier series solution. Of course. here again. to make effective use of the refined 54 dof element
some grading of the mesh should be used in the region of steep force and moment gradients. It
can be seen from Figs. 10 and 11 that when this is done considerable improvement in accuracy
results, to the extent that the calculated strain energy for the 4 x 4A mesh solution differs only by
0-31% compared with the Fourier series solution. (Note that the 2 x2A mesh is basically a
uniform 2 X 2 mesh but has the same kind of refinement in the rectangle local to the applied load
as is shown for the 4 x 4A mesh in Fig. 9.
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Fig. 11. Supported pinched cylinder. distributions along BC.

4. CONCIL.USIONS

The numerical results indicate the high accuracy which can be obtained in a wide range of
shell problems using a conforming, triangular finite element formulated in terms of conventional
shell theory and based on polynomial surface displacement components which are each of
constrained-quintic order. From the results presented here and from those of the limiting case of
the arch it is concluded that the 54 dof clement is generally more efficient than are elements which
have some or all polynomial displacement components of lower order. In particular whilst the



1110 D. 1 Dawr

efficiency of the 54 dof element will perhaps differ little in some shallow-shell applications from
that of a related 36 dof element (with cubic membrane components), there can be very significant
gains in efficiency in applications involving shells of deep. thin geometry. The oscillation or
waviness of calculated displacement. force or moment distributions which appears characteristic
of comparatively high-order. curved. displacement elements is significantly reduced in the 34 dof
element.

As with other high-order displacement elements the use of the present element involves
connection of displacement derivatives at the nodes whose compatihility is not required by the
variational formulation. From the results obtained here and those obtained carlier for arches this
over-compatibility does not appear to lead to any significant excess stiffness. In some
circumstances the connection of particular displacement derivatives will need to be relaxed to
accommodate some specific physical condition of the shell.
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